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Abstract. Registration and segmentation of anatomical structures are
two well studied problems in medical imaging. Optimizing segmenta-
tion and registration jointly has been proven to improve results for both
challenges. In this work, we propose a joint optimization scheme for reg-
istration and segmentation using dictionary learning based descriptors.
Our joint registration and segmentation aims to solve an optimization
function, which enables better performance for both of these ill-posed
processes. We build two dictionaries for background and myocardium
for square patches extracted from training images. Based on dictionary
learning residuals and sparse representations defined on these pre-trained
dictionaries, a Markov Random Field (MRF) based joint optimization
scheme is built. The algorithm proceeds iteratively updating the dic-
tionaries in an online fashion. The accuracy of the proposed method
is illustrated on Cardiac Phase-resolved Blood Oxygen-Level-Dependent
(CP-BOLD) MRI and standard cine Cardiac MRI data from MICCAI
2013 SATA Segmentation Challenge. The proposed joint segmentation
and registration method achieve highers dice accuracy for myocardium
segmentation compared to its variants.

Keywords: Segmentation, Registration, Markov Random Fields, Joint opti-
mization, BOLD, CINE MR.

1 Introduction

Cardiac Phase-resolved Blood Oxygen-Level-Dependent (CP-BOLD MRI) is a
new imaging technique, free of stress and contrast agents, used for the assessment
of myocardial ischemia at rest [19]. The specific segmentation and registration
among the cardiac phases in this cine type acquisition is crucial for automated
analysis approaches of this technique, since it potentially leads to better speci-
ficity of ischemia detection [4]. To achieve this, precise segmentation and non-
linear registration of the myocardium among the frames (the cardiac phases) in
the cine stack would be required. Unfortunately, at present due to BOLD con-
trast variations, classical approaches to segmentation [15] and registration [14]
fail to reach sufficient accuracy.

In this paper, we propose a joint registration and segmentation scheme to
generate accurate timeseries information for cardiac sequence. We adopt a joint
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optimization scheme [11] to optimize the registration term on sparse representa-
tions and segmentation terms for dictionary learning residuals. The motivation
behind this choice is the mutual benefit of both functions, which can be directly
translated to accurate registration and segmentation.

There are two major contributions of this work. First, we define a joint op-
timization scheme based on dictionary learning residuals and sparse represen-
tations for the first time. Second, we introduce an iterative dictionary update
stage, which takes the spatial smoothness into account to increase discrimina-
tive power of the dictionary learning structure. With this, the dictionaries are
ensured to be subject-specific and more robust for classifying the myocardium
region.

The remainder of the paper is organized as follows: Section 2 investigates
the prior art on joint registration and segmentation. Section 3 discusses the dic-
tionary learning based methods for image registration and segmentation and
presents the proposed joint optimization scheme for myocardial timeseries gen-
eration. The experimental results are described in Section 4 and, Section 5 con-
cludes the paper.

2 Background

Registration and segmentation of organs in medical imaging are two major tasks,
which are processed with two independent optimization schemes in most appli-
cations. One approach of solving both problems is using a sequential strategy
to address both challenges, which results in concatenation of errors of both pro-
cesses. Instead of a sequential segmentation and registration scheme, which uses
estimated solution of one sub-problem as a prior knowledge to the other, joint
optimization of two problems can be defined [21], where both problems are solved
simultaneously. Early works merged the two processes with partial differential
equations [20] and and in particular within level-set formulations [22]. More re-
cent literature relies on joint optimization with single function simultaneously
using Markov Random Fields (MRF)s [7]. MRFs are suitable for discrete la-
beling problems and the labels are defined as segmentation classes and discrete
displacement vectors. The concept of utilizing mutual benefits between the regis-
tration and segmentation has been studied for the problem of atlas-based tumor
segmentation for brain MRI [16]. Alchatzidis et al. [3] proposes to couple seg-
mentation and registration scheme for classifying multiple regions in brain MRI
and compared with standard post-registration label fusion strategies [2] . Ma-
hapatra et al. [10] used a joint optimization scheme to detect the left ventricle
(LV) in standard cine and perfusion MR images.

In joint registration and segmentation, the estimate of one set of parame-
ters of registration should not adversely affect parameters of segmentation. An
appropriate optimization scheme aims to balance these influences. Graph cuts
is based on maximum-flow approach and is very effective in finding the global
minimum or a strong local minimum of discrete MRF energy formulations [5].
However, a number of issues have to be addressed in using segmentation in-
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Fig. 1: Algorithm design for joint segmentation and registration. Region of interest ex-
traction (Panel A). Dictionary learning from training images and calculation of resid-
uals (R) and sparse coefficients(X) (Panel B). Multi-resolution deformation grids and
exemplary connections with segmentation grid (Panel C)

formation for MRF-based registration. Registration and segmentation energies
have to be combined such that there is no bias for a particular term. The mutual
dependence of registration and segmentation has to be factored in the objective
function.

In this work, we propose a joint optimization scheme for myocardial regis-
tration and segmentation to generate accurate deformations and segmentation
masks for the entire cine stack. Our method builds upon the externally trained
dictionaries of myocardium and background and uses priors on each problem
jointly to extract and register the myocardial region. We introduce a dictionary
update scheme to fuse subject-specific local information. Our algorithm gener-
ates deformations and segmentations for the entire cardiac sequence.

3 Methods

The details of our method are visualized in Figure 1. We extract a region of
interest around LV blood pool using a similar preprocessing strategy to [17].
We use externally trained dictionaries of myocardium and background to define
registration and segmentation terms for joint optimization. Then, these terms
are optimized using a discrete graphical model over the labels of registration
and segmentation. Finally, we update our dictionaries to enrich subject-specific
information in the dictionaries and run the optimization process again.

3.1 Dictionary Learning based Image Segmentation

Dictionary learning based approaches have been used for segmentation of medi-
cal images [9]. In our specific algorithmic design, given some sequences of training
images and corresponding ground truth labels, we can obtain two sets of matri-
ces, Y B and YM , where the matrix Y B contains the background information and
YM is the corresponding matrix referring to the myocardium. Squared patches
are sampled around each pixel of the training images from both regions. The
i-th column of the matrix Y B (and similarly for the matrix YM ) is obtained by
concatenating the normalized patch vector of pixel intensities, taken around the
i-th pixel in the background, along with the Gabor and HOG features of the
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same patch. The method detailed in [13] trains two dictionaries, DB
k and DM

k ,
and two sparse feature matrices, XB

k and XM
k using the K-SVD algorithm [1]

for each class C = {B,M} :

minimize
DC ,XC

‖Y C −DCXC‖22, subject to ‖xCi ‖0 ≤ sparsity

After the training given a new subject, a certain patch will be assigned to the
class that gives the smallest dictionary approximation error using Orthogonal
Matching Pursuit [18]. If RB = ‖ŷi−DBx̂Bi ‖2 is less than RM = ‖ŷi−DM x̂Mi ‖2,
the patch is assigned to the background; otherwise, it is considered belonging to
the myocardial region.

3.2 Graph-based Joint Optimization

In this section, we introduce our dictionary learning based joint optimization
scheme for registration and segmentation of the myocardium. The general term
for energy of a second-order MRF is defined as:

E(L) =
∑
p∈Ω

Dp(lp) + λ
∑
p,q∈N

Vpq(lp, lq)

where p and q denote the pixels, lp and lq denotes the registration and segmenta-
tion labels of the pixels p and q. λ controls the interaction between data term and
smoothness term. The function is optimized over the labels L = {C, u}, which
consists of the segmentation label C and discrete deformation u. We define the
general data term Dp(lp) similar to [10]:

Dp(lp) = D1
lp + γD2

lp

which consists of two terms, namely segmentation and registration data terms.
Segmentation of the myocardium is defined over the dictionary learning residuals
RB and RM . The penalty of the pixel p to be classified as myocardium is :

κM (p) = RM (p)
RM (p)+RB(p) . Similarly, the penalty for the same pixel to be classified

as background is κB(p) = RB(p)
RM (p)+RB(p) . Using these penalty definitions D1

p is

defined as:

D1
lp =


√
κrM (p) ∗ κfM (p+ u), if Cr(p) = Cf (p+ u) = M√
κrB(p) ∗ κfB(p+ u), if Cr(p) = Cf (p+ u) = B√
κrB(p) ∗ κfB(p+ u) +

√
κtM (r) ∗ κfM (p+ u), otherwise

where κfM (p+u) corresponds to the penalty associated with myocardium class for
the deformed floating image with displacement u. Similarly, κrB(p) corresponds
to penalty of the reference image for the background class. This term ensures
a low penalty for same labels of the displaced image and the reference image.
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If the floating image and the reference image do favor different segmentation
classes the penalty will be high.

The registration penalty term D2
lp

of the data term Dlp is defined as:

D2
lp =


‖ Xr

M (p)−Xf
M (p+ u) ‖1, if Cr(p) = Cf (p+ u) = M

‖ Xr
B(p)−Xf

B(p+ u) ‖1, if Cr(p) = Cf (p+ u) = B

‖ Xr
M (p)−Xf

M (p+ u) ‖1 + ‖ Xr
B(p)−Xf

B(p+ u) ‖1, otherwise

where Xr
M (p) corresponds to the sparse representation defined for DM for the

reference image and Xf
M (p+u) defines sparse representation defined for the float-

ing image at location p+u. This penalty is increased for dissimilar representation
and also for the points with different segmentation labels.

Regularization term ensures the smoothness of segmentation labels and de-
formation field. The term favors the same segmentation labels in local neighbor-
hoods and smooth deformations. The regularization term is defined as:

Vpq(lp, lq) =


1, if (Cp = Cq and ‖ up − uq ‖≤ ε)
1, if (Cp 6= Cq and ‖ up − uq ‖≤ τ)

100, otherwise

where ε and τ restrict high displacements for local neighborhoods when segmen-
tation labels agree or disagree respectively. To optimize the energy functional
E(L), we use graph cuts [5] on discrete labels of registration and segmentation.

3.3 Dictionary Update

We propose a dictionary update, which refines the dictionaries to inject subject-
specific information. After every run of the MRF-based optimization scheme the
estimated segmentation labels C are subject to change. We only extract patches
that are corresponding to the points of label changes to update our dictionar-
ies. We add square patches Yu concatenated with Gabor and HOG features and
train our dictionaries with Online Dictionary Learning (ODL) algorithm [12],
which uses mini-batches to update the dictionaries. We add the new patches
with changed labels for updating dictionaries we trained before. During the up-
date the dictionary learning is initialized with the pre-trained dictionaries and
this approach improves the discriminative power of the dictionaries in the next
iteration.

4 Experimental Results

This section offers qualitative and quantitative comparison of our proposed
method w.r.t. state-of-the-art methods, to demonstrate its effectiveness for my-
ocardial segmentation and registration. Note that our method outperforms all
supervised methods from current literature in both baseline and ischemia cases.
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Fig. 2: Segmentation masks (red contours) and registration grid of proposed approach
compared to CRS [11] (green contours) for an exemplary subject under baseline con-
ditions in between end diastole and end systole frames.

4.1 Data Preparation and Implementation Details

2D short-axis images of the whole cardiac cycle were acquired at baseline and se-
vere ischemia (inflicted as stenosis of the left-anterior descending coronary artery
(LAD)) on a 1.5T Espree (Siemens Healthcare) in the same 10 canines along mid
ventricle using both standard CINE and a flow and motion compensated CP-
BOLD acquisition within few minutes of each other. The image resolution is
192× 114 and each cardiac cycle has 25 frames approximately. We have utilized
a strict leave one out cross validation experiment, where the patch size is defined
as 11× 11, dictionary size as 100 and sparsity threshold as 8. The parameters of
deformation ε =

√
2 and τ = 3 are optimized to ensure smooth labels for defor-

mations. γ = 0.7 gave the optimal contribution of the data terms and λ = 0.9
ensures the balance of regularization and data terms. We have utilized three
scales from coarse to fine for registration. The influence of the control points on
each pixel is calculated using cubic B-Splines [8]. The displacement ranges from
2 to 6 pixels.

4.2 Visual Evaluation

We demonstrate a set of contours and a deformation grid to highlight the per-
formance of our joint optimization and registration framework. In Fig. 2, we
visualize the deformation grid in between the end systole and end diastole for
an exemplary subject under baseline condition. We also illustrate the segmen-
tation and deformation results of CRS [11] compared with our algorithm. Our
method generates smooth deformation fields and smooth contours compared to
CRS [11].

4.3 Quantitative Comparison

Table 1 summarizes our results for Dice overlap measure for myocardium. We
compare our algorithm with an atlas-based segmentation technique, which relies
on discrete registration performance using mutual information as a similarity
metric [8]. Moreover, we include a recent joint registration and segmentation
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Table 1: Dice overlap comparison of myocardial segmentation

Baseline Ischemia
Methods Standard Cine CP-BOLD Standard Cine CP-BOLD

Atlas-based [8] 0.60 ∓ 0.03 0.54 ∓ 0.08 0.54 ∓ 0.08 0.45 ∓ 0.06
CRS [11] 0.71 ∓ 0.06 0.70 ∓ 0.06 0.69 ∓ 0.05 0.68 ∓ 0.07
Segmentation only 0.70 ∓ 0.05 0.71 ∓ 0.04 0.69 ∓ 0.04 0.68 ∓ 0.04
Sequential Seg. and Reg. 0.74 ∓ 0.06 0.72 ∓ 0.07 0.71 ∓ 0.07 0.68 ∓ 0.08
Proposed w.o update 0.75 ∓ 0.04 0.76 ∓ 0.04 0.75 ∓ 0.05 0.74 ∓ 0.04

Proposed 0.81 ∓ 0.04 0.80 ∓ 0.04 0.79 ∓ 0.04 0.80 ∓ 0.05

scheme CRS [11], which relies on sum of squared distances and edge-based dif-
ferences as similarity term for registration. We generate results based on dic-
tionary residuals for each pixel just for segmentation (Segmentation only). In
addition, we used a sequential segmentation and registration (Sequential Seg.
and Reg.), which first segments myocardium based on residuals and then refines
the contours with propagation of the contours via registration based on sparse
representations. Finally, we generate a variant of our algorithm, without using
the dictionary update (Proposed w.o. update) to highlight the performance in-
crease.

The proposed method outperforms all variants and other techniques in all
four datasets. Segmentation information alone shows low performance compared
to the variants, which incorporate registration. The sequential segmentation and
registration has low performance compared to the proposed method. This low
performance is due to the mutual dependence of registration and segmentation
that has not been factored in the objective function, which is ensured with the
proposed approach. Our method is superior to CRS [11], which relies on edge-
based terms for myocardial registration. Ischemia condition generates a slight
decrease in the performance for all methods. The proposed dictionary update
enables a performance improvement thanks to less coherent dictionaries. The
coherence of two dictionaries is calculated before and after the single dictionary
update. The average coherence of two dictionaries 0.850 is reduced to 0.780 with
the update. We illustrate an example set of dictionaries before and after the
update in Fig. 3.

4.4 CAP Dataset

To demonstrate that our method works also non-BOLD, clinical data, we have
tested our algorithm on cine cardiac training data set from the MICCAI 2013
SATA Segmentation Challenge. The dataset is part of the Cardiac Atlas Project
(CAP) [6] and consists of 83 subjects with a varying in plane resolution from
0.7 mm to 2mm and a varying range of 19 to 30 frames per subject. On mid-
ventricular level, we train our algorithm on 30 subjects to learn dictionaries for
background and myocardium. Then, we test on the remaining 53 subjects and we
achieve a dice score of 0.81∓0.04 compared to 0.80∓0.05 of CRS [11] algorithm
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Fig. 3: Background and myocardium dictionaries before and after the dictionary up-
date. Observe the increased number of unique myocardial patterns after the dictionary
update.

(where standard deviation refers to variation among subjects and not on leave
one cross validation).

5 Conclusion

In this paper, we propose a joint registration and segmentation scheme based
on sparse representation. Our algorithm uses a MRF-based optimization scheme
defined on dictionary learning residuals and at each iteration the dictionaries are
updated using patches corresponding to the points that changed segmentation
labels. This not only improves the performance by introducing subject specific
information, but also adds more discriminative power as showcased with exper-
iments. Currently, our algorithm works on 2D and we would like to extend our
method to 3D. Moreover, currently we evaluate the deformation field visually
and not quantitatively. One way to evaluate the registration performance is the
target registration error, which will be available with the definition of landmark
points for each frame. In the future, we would like to evaluate our approach on
perfusion images that show stronger spatio-temporal variations.
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